П О Р Т А Л                            
С Е Т Е В Ы Х                          
П Р О Е К Т О В                        
  
Поиск по сайту:
                                                 
Главная

О проекте

Web-мастеру
     HTML & JavaScript
     SSI
     Perl
     PHP
     XML & XSLT
     Unix Shell

MySQL

Безопасность

Хостинг

Другое








Самое читаемое:

Учебник PHP - "Для Чайника".
Просмотров 4207 раз(а).

Иллюстрированный самоучитель по созданию сайтов.
Просмотров 6879 раз(а).

Учебник HTML.
Просмотров 3815 раз(а).

Руководство по PHP5.
Просмотров 6116 раз(а).

Хостинг через призму DNS.
Просмотров 4969 раз(а).

Подборка текстов стандартных документов.
Просмотров 56357 раз(а).

Учебник PHP - Самоучитель
Просмотров 3817 раз(а).

Документация на MySQL (учебник & справочное руководство)
Просмотров 8777 раз(а).

Внешние атаки...
Просмотров 4689 раз(а).

Учебник PHP.
Просмотров 3249 раз(а).

SSI в примерах.
Просмотров 254 раз(а).



 
 
| Добавить в избранное | Сделать стартовой | Помощь





Руководство по PHP
Пред. Глава 46. Zend API: Hacking the Core of PHP След.

Creating Variables

When exchanging data from your own extensions with PHP scripts, one of the most important issues is the creation of variables. This section shows you how to deal with the variable types that PHP supports.

Overview

To create new variables that can be seen "from the outside" by the executing script, you need to allocate a new zval container, fill this container with meaningful values, and then introduce it to Zend's internal symbol table. This basic process is common to all variable creations:

zval *new_variable; 

/* allocate and initialize new container */
MAKE_STD_ZVAL(new_variable); 

/* set type and variable contents here, see the following sections */ 

/* introduce this variable by the name "new_variable_name" into the symbol table */
ZEND_SET_SYMBOL(EG(active_symbol_table), "new_variable_name", new_variable); 

/* the variable is now accessible to the script by using $new_variable_name */

The macro MAKE_STD_ZVAL allocates a new zval container using ALLOC_ZVAL and initializes it using INIT_ZVAL. As implemented in Zend at the time of this writing, initializing means setting the reference count to 1 and clearing the is_ref flag, but this process could be extended later - this is why it's a good idea to keep using MAKE_STD_ZVAL instead of only using ALLOC_ZVAL. If you want to optimize for speed (and you don't have to explicitly initialize the zval container here), you can use ALLOC_ZVAL, but this isn't recommended because it doesn't ensure data integrity.

ZEND_SET_SYMBOL takes care of introducing the new variable to Zend's symbol table. This macro checks whether the value already exists in the symbol table and converts the new symbol to a reference if so (with automatic deallocation of the old zval container). This is the preferred method if speed is not a crucial issue and you'd like to keep memory usage low.

Note that ZEND_SET_SYMBOL makes use of the Zend executor globals via the macro EG. By specifying EG(active_symbol_table), you get access to the currently active symbol table, dealing with the active, local scope. The local scope may differ depending on whether the function was invoked from within a function.

If you need to optimize for speed and don't care about optimal memory usage, you can omit the check for an existing variable with the same value and instead force insertion into the symbol table by using zend_hash_update():
zval *new_variable;

/* allocate and initialize new container */
MAKE_STD_ZVAL(new_variable);

/* set type and variable contents here, see the following sections */

/* introduce this variable by the name "new_variable_name" into the symbol table */
zend_hash_update(
EG(active_symbol_table),
"new_variable_name",
strlen("new_variable_name") + 1,
&new_variable,
sizeof(zval *),
NULL
);
This is actually the standard method used in most modules.

The variables generated with the snippet above will always be of local scope, so they reside in the context in which the function has been called. To create new variables in the global scope, use the same method but refer to another symbol table:
zval *new_variable;
 
// allocate and initialize new container
MAKE_STD_ZVAL(new_variable);

//
// set type and variable contents here
//

// introduce this variable by the name "new_variable_name" into the global symbol table
ZEND_SET_SYMBOL(&EG(symbol_table), "new_variable_name", new_variable);
The macro ZEND_SET_SYMBOL is now being called with a reference to the main, global symbol table by referring EG(symbol_table).

Note: The active_symbol_table variable is a pointer, but symbol_table is not. This is why you have to use EG(active_symbol_table) and &EG(symbol_table) as parameters to ZEND_SET_SYMBOL - it requires a pointer.

Similarly, to get a more efficient version, you can hardcode the symbol table update:
zval *new_variable;

// allocate and initialize new container
MAKE_STD_ZVAL(new_variable);

//
// set type and variable contents here
//

// introduce this variable by the name "new_variable_name" into the global symbol table
zend_hash_update(
&EG(symbol_table),
"new_variable_name",
strlen("new_variable_name") + 1,
&new_variable,
sizeof(zval *),
NULL
);
Прим. 46-9 shows a sample source that creates two variables - local_variable with a local scope and global_variable with a global scope (see Figure 9.7). The full example can be found on the CD-ROM.

Note: You can see that the global variable is actually not accessible from within the function. This is because it's not imported into the local scope using global $global_variable; in the PHP source.

Пример 46-9. Creating variables with different scopes.

ZEND_FUNCTION(variable_creation)
{
zval *new_var1, *new_var2;

MAKE_STD_ZVAL(new_var1);
MAKE_STD_ZVAL(new_var2);

ZVAL_LONG(new_var1, 10);
ZVAL_LONG(new_var2, 5);

ZEND_SET_SYMBOL(EG(active_symbol_table), "local_variable", new_var1);
ZEND_SET_SYMBOL(&EG(symbol_table), "global_variable", new_var2);

RETURN_NULL();

}

Longs (Integers)

Now let's get to the assignment of data to variables, starting with longs. Longs are PHP's integers and are very simple to store. Looking at the zval.value container structure discussed earlier in this chapter, you can see that the long data type is directly contained in the union, namely in the lval field. The corresponding type value for longs is IS_LONG (see Прим. 46-10).

Пример 46-10. Creation of a long.

zval *new_long;

MAKE_STD_ZVAL(new_long);

new_long->type = IS_LONG;
new_long->value.lval = 10;
Alternatively, you can use the macro ZVAL_LONG:
zval *new_long;

MAKE_STD_ZVAL(new_long);
ZVAL_LONG(new_long, 10);

Doubles (Floats)

Doubles are PHP's floats and are as easy to assign as longs, because their value is also contained directly in the union. The member in the zval.value container is dval; the corresponding type is IS_DOUBLE.
zval *new_double;

MAKE_STD_ZVAL(new_double);

new_double->type = IS_DOUBLE;
new_double->value.dval = 3.45;
Alternatively, you can use the macro ZVAL_DOUBLE:
zval *new_double;

MAKE_STD_ZVAL(new_double);
ZVAL_DOUBLE(new_double, 3.45);

Strings

Strings need slightly more effort. As mentioned earlier, all strings that will be associated with Zend's internal data structures need to be allocated using Zend's own memory-management functions. Referencing of static strings or strings allocated with standard routines is not allowed. To assign strings, you have to access the structure str in the zval.value container. The corresponding type is IS_STRING:
zval *new_string;
char *string_contents = "This is a new string variable";

MAKE_STD_ZVAL(new_string);

new_string->type = IS_STRING;
new_string->value.str.len = strlen(string_contents);
new_string->value.str.val = estrdup(string_contents);
Note the usage of Zend's estrdup() here. Of course, you can also use the predefined macro ZVAL_STRING:
zval *new_string;
char *string_contents = "This is a new string variable";

MAKE_STD_ZVAL(new_string);
ZVAL_STRING(new_string, string_contents, 1);
ZVAL_STRING accepts a third parameter that indicates whether the supplied string contents should be duplicated (using estrdup()). Setting this parameter to 1 causes the string to be duplicated; 0 simply uses the supplied pointer for the variable contents. This is most useful if you want to create a new variable referring to a string that's already allocated in Zend internal memory.

If you want to truncate the string at a certain position or you already know its length, you can use ZVAL_STRINGL(zval, string, length, duplicate), which accepts an explicit string length to be set for the new string. This macro is faster than ZVAL_STRING and also binary-safe.

To create empty strings, set the string length to 0 and use empty_string as contents:
new_string->type = IS_STRING;
new_string->value.str.len = 0;
new_string->value.str.val = empty_string;
Of course, there's a macro for this as well (ZVAL_EMPTY_STRING):
MAKE_STD_ZVAL(new_string);
ZVAL_EMPTY_STRING(new_string);

Booleans

Booleans are created just like longs, but have the type IS_BOOL. Allowed values in lval are 0 and 1:
zval *new_bool;

MAKE_STD_ZVAL(new_bool);

new_bool->type = IS_BOOL;
new_bool->value.lval = 1;
The corresponding macros for this type are ZVAL_BOOL (allowing specification of the value) as well as ZVAL_TRUE and ZVAL_FALSE (which explicitly set the value to TRUE and FALSE, respectively).

Arrays

Arrays are stored using Zend's internal hash tables, which can be accessed using the zend_hash_*() API. For every array that you want to create, you need a new hash table handle, which will be stored in the ht member of the zval.value container.

There's a whole API solely for the creation of arrays, which is extremely handy. To start a new array, you call array_init().
zval *new_array;

MAKE_STD_ZVAL(new_array);

array_init(new_array);
array_init() always returns SUCCESS.

To add new elements to the array, you can use numerous functions, depending on what you want to do. Табл. 46-8, Табл. 46-9 and Табл. 46-10 describe these functions. All functions return FAILURE on failure and SUCCESS on success.

Таблица 46-8. Zend's API for Associative Arrays

FunctionDescription
add_assoc_long(zval *array, char *key, long n);() Adds an element of type long.
add_assoc_unset(zval *array, char *key);()Adds an unset element.
add_assoc_bool(zval *array, char *key, int b);() Adds a Boolean element.
add_assoc_resource(zval *array, char *key, int r);() Adds a resource to the array.
add_assoc_double(zval *array, char *key, double d);() Adds a floating-point value.
add_assoc_string(zval *array, char *key, char *str, int duplicate);() Adds a string to the array. The flag duplicate specifies whether the string contents have to be copied to Zend internal memory.
add_assoc_stringl(zval *array, char *key, char *str, uint length, int duplicate); () Adds a string with the desired length length to the array. Otherwise, behaves like add_assoc_string().
add_assoc_zval(zval *array, char *key, zval *value);()Adds a zval to the array. Useful for adding other arrays, objects, streams, etc...

Таблица 46-9. Zend's API for Indexed Arrays, Part 1

FunctionDescription
add_index_long(zval *array, uint idx, long n);()Adds an element of type long.
add_index_unset(zval *array, uint idx);()Adds an unset element.
add_index_bool(zval *array, uint idx, int b);()Adds a Boolean element.
add_index_resource(zval *array, uint idx, int r);()Adds a resource to the array.
add_index_double(zval *array, uint idx, double d);()Adds a floating-point value.
add_index_string(zval *array, uint idx, char *str, int duplicate);()Adds a string to the array. The flag duplicate specifies whether the string contents have to be copied to Zend internal memory.
add_index_stringl(zval *array, uint idx, char *str, uint length, int duplicate);()Adds a string with the desired length length to the array. This function is faster and binary-safe. Otherwise, behaves like add_index_string()().
add_index_zval(zval *array, uint idx, zval *value);()Adds a zval to the array. Useful for adding other arrays, objects, streams, etc...

Таблица 46-10. Zend's API for Indexed Arrays, Part 2

FunctionDescription
add_next_index_long(zval *array, long n);()Adds an element of type long.
add_next_index_unset(zval *array);()Adds an unset element.
add_next_index_bool(zval *array, int b);()Adds a Boolean element.
add_next_index_resource(zval *array, int r);()Adds a resource to the array.
add_next_index_double(zval *array, double d);()Adds a floating-point value.
add_next_index_string(zval *array, char *str, int duplicate);()Adds a string to the array. The flag duplicate specifies whether the string contents have to be copied to Zend internal memory.
add_next_index_stringl(zval *array, char *str, uint length, int duplicate);()Adds a string with the desired length length to the array. This function is faster and binary-safe. Otherwise, behaves like add_index_string()().
add_next_index_zval(zval *array, zval *value);()Adds a zval to the array. Useful for adding other arrays, objects, streams, etc...

All these functions provide a handy abstraction to Zend's internal hash API. Of course, you can also use the hash functions directly - for example, if you already have a zval container allocated that you want to insert into an array. This is done using zend_hash_update()() for associative arrays (see Прим. 46-11) and zend_hash_index_update() for indexed arrays (see Прим. 46-12):

Пример 46-11. Adding an element to an associative array.

zval *new_array, *new_element;
char *key = "element_key";
  
MAKE_STD_ZVAL(new_array);
MAKE_STD_ZVAL(new_element);

array_init(new_array);

ZVAL_LONG(new_element, 10);

if(zend_hash_update(new_array->value.ht, key, strlen(key) + 1, (void *)&new_element, sizeof(zval *), NULL) == FAILURE)
{
// do error handling here
}

Пример 46-12. Adding an element to an indexed array.

zval *new_array, *new_element;
int key = 2;

MAKE_STD_ZVAL(new_array);
MAKE_STD_ZVAL(new_element);

array_init(new_array);

ZVAL_LONG(new_element, 10);

if(zend_hash_index_update(new_array->value.ht, key, (void *)&new_element, sizeof(zval *), NULL) == FAILURE)
{
// do error handling here
}

To emulate the functionality of add_next_index_*(), you can use this:

zend_hash_next_index_insert(ht, zval **new_element, sizeof(zval *), NULL)

Note: To return arrays from a function, use array_init() and all following actions on the predefined variable return_value (given as argument to your exported function; see the earlier discussion of the call interface). You do not have to use MAKE_STD_ZVAL on this.

Tip: To avoid having to write new_array->value.ht every time, you can use HASH_OF(new_array), which is also recommended for compatibility and style reasons.

Objects

Since objects can be converted to arrays (and vice versa), you might have already guessed that they have a lot of similarities to arrays in PHP. Objects are maintained with the same hash functions, but there's a different API for creating them.

To initialize an object, you use the function object_init():
zval *new_object;

MAKE_STD_ZVAL(new_object);

if(object_init(new_object) != SUCCESS)
{
// do error handling here
}
You can use the functions described in Табл. 46-11 to add members to your object.

Таблица 46-11. Zend's API for Object Creation

FunctionDescription
add_property_long(zval *object, char *key, long l);()Adds a long to the object.
add_property_unset(zval *object, char *key);()Adds an unset property to the object.
add_property_bool(zval *object, char *key, int b);()Adds a Boolean to the object.
add_property_resource(zval *object, char *key, long r);()Adds a resource to the object.
add_property_double(zval *object, char *key, double d);()Adds a double to the object.
add_property_string(zval *object, char *key, char *str, int duplicate);()Adds a string to the object.
add_property_stringl(zval *object, char *key, char *str, uint length, int duplicate);()Adds a string of the specified length to the object. This function is faster than add_property_string() and also binary-safe.
add_property_zval(zval *obect, char *key, zval *container):() Adds a zval container to the object. This is useful if you have to add properties which aren't simple types like integers or strings but arrays or other objects.

Resources

Resources are a special kind of data type in PHP. The term resources doesn't really refer to any special kind of data, but to an abstraction method for maintaining any kind of information. Resources are kept in a special resource list within Zend. Each entry in the list has a correspondending type definition that denotes the kind of resource to which it refers. Zend then internally manages all references to this resource. Access to a resource is never possible directly - only via a provided API. As soon as all references to a specific resource are lost, a corresponding shutdown function is called.

For example, resources are used to store database links and file descriptors. The de facto standard implementation can be found in the MySQL module, but other modules such as the Oracle module also make use of resources.

Замечание: In fact, a resource can be a pointer to anything you need to handle in your functions (e.g. pointer to a structure) and the user only has to pass a single resource variable to your function.

To create a new resource you need to register a resource destruction handler for it. Since you can store any kind of data as a resource, Zend needs to know how to free this resource if its not longer needed. This works by registering your own resource destruction handler to Zend which in turn gets called by Zend whenever your resource can be freed (whether manually or automatically). Registering your resource handler within Zend returns you the resource type handle for that resource. This handle is needed whenever you want to access a resource of this type later and is most of time stored in a global static variable within your extension. There is no need to worry about thread safety here because you only register your resource handler once during module initialization.

The Zend function to register your resource handler is defined as:
ZEND_API int zend_register_list_destructors_ex(rsrc_dtor_func_t ld, rsrc_dtor_func_t pld, char *type_name, int module_number);

There are two different kinds of resource destruction handlers you can pass to this function: a handler for normal resources and a handler for persistent resources. Persistent resources are for example used for database connection. When registering a resource, either of these handlers must be given. For the other handler just pass NULL.

zend_register_list_destructors_ex() accepts the following parameters:

ldNormal resource destruction handler callback
pldPesistent resource destruction handler callback
type_nameA string specifying the name of your resource. It's always a good thing to specify a unique name within PHP for the resource type so when the user for example calls var_dump($resource); he also gets the name of the resource.
module_numberThe module_number is automatically available in your PHP_MINIT_FUNCTION function and therefore you just pass it over.

The return value is a unique integer ID for your resource type.

The resource destruction handler (either normal or persistent resources) has the following prototype:
void resource_destruction_handler(zend_rsrc_list_entry *rsrc TSRMLS_DC);
The passed rsrc is a pointer to the following structure:
typedef struct _zend_rsrc_list_entry {
 
void *ptr;
int type;
int refcount;

} zend_rsrc_list_entry;
The member void *ptr is the actual pointer to your resource.

Now we know how to start things, we define our own resource we want register within Zend. It is only a simple structure with two integer members:
typedef struct {
 
int resource_link;
int resource_type;

} my_resource;
Our resource destruction handler is probably going to look something like this:
void my_destruction_handler(zend_rsrc_list_entry *rsrc TSRMLS_DC) {

// You most likely cast the void pointer to your structure type

my_resource *my_rsrc = (my_resource *) rsrc->ptr;

// Now do whatever needs to be done with you resource. Closing
// Files, Sockets, freeing additional memory, etc.
// Also, don't forget to actually free the memory for your resource too!

do_whatever_needs_to_be_done_with_the_resource(my_rsrc);
}

Замечание: One important thing to mention: If your resource is a rather complex structure which also contains pointers to memory you allocated during runtime you have to free them before freeing the resource itself!

Now that we have defined

  1. what our resource is and

  2. our resource destruction handler

we can go on and do the rest of the steps:

  1. create a global variable within the extension holding the resource ID so it can be accessed from every function which needs it

  2. define the resource name

  3. write the resource destruction handler

  4. and finally register the handler

// Somewhere in your extension, define the variable for your registered resources.
// If you wondered what 'le' stands for: it simply means 'list entry'.
static int le_myresource;

// It's nice to define your resource name somewhere
#define le_myresource_name  "My type of resource"

[...]

// Now actually define our resource destruction handler
void my_destruction_handler(zend_rsrc_list_entry *rsrc TSRMLS_DC) {

my_resource *my_rsrc = (my_resource *) rsrc->ptr;
do_whatever_needs_to_be_done_with_the_resource(my_rsrc);
}

[...]

PHP_MINIT_FUNCTION(my_extension) {

// Note that 'module_number' is already provided through the
// PHP_MINIT_FUNCTION() function definition.

le_myresource = zend_register_list_destructors_ex(my_destruction_handler, NULL, le_myresource_name, module_number);

// You can register additional resources, initialize
// your global vars, constants, whatever.
}

To actually register a new resource you use can either use the zend_register_resource() function or the ZEND_REGISTER_RESOURE() macro, both defined in zend_list.h . Although the arguments for both map 1:1 it's a good idea to always use macros to be upwards compatible:
int ZEND_REGISTER_RESOURCE(zval *rsrc_result, void *rsrc_pointer, int rsrc_type);

rsrc_resultThis is an already initialized zval * container.
rsrc_pointerYour resource pointer you want to store.
rsrc_typeThe type which you received when you registered the resource destruction handler. If you followed the naming scheme this would be le_myresource.

The return value is a unique integer identifier for that resource.

What is really going on when you register a new resource is it gets inserted in an internal list in Zend and the result is just stored in the given zval * container:
rsrc_id = zend_list_insert(rsrc_pointer, rsrc_type);
 
if (rsrc_result) {
rsrc_result->value.lval = rsrc_id;
rsrc_result->type = IS_RESOURCE;
}

return rsrc_id;
The returned rsrc_id uniquly identifies the newly registered resource. You can use the macro RETURN_RESOURE to return it to the user:
RETURN_RESOURCE(rsrc_id)

Замечание: It is common practice that if you want to return the resource immidiately to the user you specify the return_value as the zval * container.

Zend now keeps track of all references to this resource. As soon as all references to the resource are lost, the destructor that you previously registered for this resource is called. The nice thing about this setup is that you don't have to worry about memory leakages introduced by allocations in your module - just register all memory allocations that your calling script will refer to as resources. As soon as the script decides it doesn't need them anymore, Zend will find out and tell you.

Now that the user got his resource, at some point he is passing it back to one of your functions. The value.lval inside the zval * container contains the key to your resource and thus can be used to fetch the resource with the following macro: ZEND_FETCH_RESOURCE:
ZEND_FETCH_RESOURCE(rsrc, rsrc_type, rsrc_id, default_rsrc_id, resource_type_name, resource_type)

rsrcThis is your pointer which will point to your previously registered resource.
rsrc_typeThis is the typecast argument for your pointer, e.g. myresource *.
rsrc_idThis is the address of the zval *container the user passed to your function, e.g. &z_resource if zval *z_resource is given.
default_rsrc_idThis integer specifies the default resource ID if no resource could be fetched or -1.
resource_type_nameThis is the name of the requested resource. It's a string and is used when the resource can't be found or is invalid to form a meaningful error message.
resource_typeThe resource_type you got back when registering the resource destruction handler. In our example this was le_myresource.

This macro has no return value. It is for the developers convenience and takes care of TSRMLS arguments passing and also does check if the resource could be fetched. It throws a warning message and returns the current PHP function with NULL if there was a problem retrieving the resource.

To force removal of a resource from the list, use the function zend_list_delete(). You can also force the reference count to increase if you know that you're creating another reference for a previously allocated value (for example, if you're automatically reusing a default database link). For this case, use the function zend_list_addref(). To search for previously allocated resource entries, use zend_list_find(). The complete API can be found in zend_list.h.

Macros for Automatic Global Variable Creation

In addition to the macros discussed earlier, a few macros allow easy creation of simple global variables. These are nice to know in case you want to introduce global flags, for example. This is somewhat bad practice, but Table Табл. 46-12 describes macros that do exactly this task. They don't need any zval allocation; you simply have to supply a variable name and value.

Таблица 46-12. Macros for Global Variable Creation

MacroDescription
SET_VAR_STRING(name, value)Creates a new string.
SET_VAR_STRINGL(name, value, length)Creates a new string of the specified length. This macro is faster than SET_VAR_STRING and also binary-safe.
SET_VAR_LONG(name, value)Creates a new long.
SET_VAR_DOUBLE(name, value)Creates a new double.

Creating Constants

Zend supports the creation of true constants (as opposed to regular variables). Constants are accessed without the typical dollar sign ($) prefix and are available in all scopes. Examples include TRUE and FALSE, to name just two.

To create your own constants, you can use the macros in Табл. 46-13. All the macros create a constant with the specified name and value.

You can also specify flags for each constant:

  • CONST_CS - This constant's name is to be treated as case sensitive.

  • CONST_PERSISTENT - This constant is persistent and won't be "forgotten" when the current process carrying this constant shuts down.

To use the flags, combine them using a inary OR:
// register a new constant of type "long"
 REGISTER_LONG_CONSTANT("NEW_MEANINGFUL_CONSTANT", 324, CONST_CS |
 CONST_PERSISTENT);
There are two types of macros - REGISTER_*_CONSTANT andREGISTER_MAIN_*_CONSTANT. The first type creates constants bound to the current module. These constants are dumped from the symbol table as soon as the module that registered the constant is unloaded from memory. The second type creates constants that remain in the symbol table independently of the module.

Таблица 46-13. Macros for Creating Constants

MacroDescription
REGISTER_LONG_CONSTANT(name, value, flags) REGISTER_MAIN_LONG_CONSTANT(name, value, flags) Registers a new constant of type long.
REGISTER_DOUBLE_CONSTANT(name, value, flags) REGISTER_MAIN_DOUBLE_CONSTANT(name, value, flags) Registers a new constant of type double.
REGISTER_STRING_CONSTANT(name, value, flags) REGISTER_MAIN_STRING_CONSTANT(name, value, flags) Registers a new constant of type string. The specified string must reside in Zend's internal memory.
REGISTER_STRINGL_CONSTANT(name, value, length, flags) REGISTER_MAIN_STRINGL_CONSTANT(name, value, length, flags) Registers a new constant of type string. The string length is explicitly set to length. The specified string must reside in Zend's internal memory.

Пред. Начало След.
Accepting ArgumentsУровень выше Duplicating Variable Contents: The Copy Constructor


Если Вы не нашли что искали, то рекомендую воспользоваться поиском по сайту:
 





Copyright © 2005-2016 Project.Net.Ru